W. Hölzel
  • Chemie
      • Back
      • Themen
      • 08. Klasse
          • Back
          • 1 Stoffe und ihre Eigenschaften
              • Back
              • 01 Eigenschaften, Dichte und Dichtebestimmung
              • 02 Atommodell nach Dalton - Kugelteilchenmodell
              • 03 Aggregatzustände und Kugelteilchenmodell
              • 04 Brownsche Molekularbewegung, Diffusion und Lösungen
              • 05 Stoffklassen, Reinstoffe, Gemische
          • 2. Die chemische Reaktion
              • Back
              • 01 Eisen reagiert mit Schwefel
              • 02 Chemische Reaktion und Energie
              • 03 Weitere Metalle + Schwefel
              • 04 Rückgewinnung von Metallen
              • 05 Aktivierungsenergie
          • 3. Elemente und Verbindungen
              • Back
              • 01 Element, Verbindung, Synthese und Analyse
          • 4. Quantitative Beziehungen
              • Back
              • 01 Quantitative Gesetze
              • 02 Atommasse
              • 03 Avogadro-Konstante, Stoffmenge und Teilchenanzahl
              • 04 Molare Masse
              • 05 Verhältnisformel
              • 06 Moleküle
              • 07 Bedeutung von chemischen Formeln
              • 08 Übungsaufgaben
          • 5. Der Atombau und weitere Kap.
              • Back
              • 01 Einleitung
              • 02 Elementarteilchen - Protonen, Neutronen, Elektronen
              • 03 Atomkern und Atomhülle und Nils Bohr
              • 04 Kugelwolkenmodell (KWM) und Pauli-Prinzip
              • 05 Periodensystem der Elemente (PSE)
              • 06 Edelgasregel - Oktettregel
              • 07 Atombindung
              • 08 Ionenbindung
      • 09. Klasse
          • Back
          • 1. Vom Atombau bis ZMKs
              • Back
              • 1 Das Periodensystem der Elemente (Teil I)
              • 2 Atommodelle - Wiederholung Demokrit und Dalton
              • 2.3 Rutherford: Kern-Hülle-Modell
              • 2.4 Bohr – Schalenmodell der Elektronenhülle
              • 2.5 Das Kugelwolkenmodell, KWM
              • 2.6 Das Periodensystem der Elemente (PSE) und die Atommodelle
              • 2.7 Lewis – Formeln für Moleküle
              • 3 Edelgasregel (Oktettregel)
              • 4 Atombindung = Elektronenpaarbindung
              • 4.1 Die HNO-Regel (HNO7-Regel)
              • 4.1.1 Die Elektronenpaar-Bindung und die HNO-Regel
              • 4.2 Summenformel
              • 4.3 Reaktionsgleichungen in Lewis-Schreibweise und Summenformeln
              • 4.4 Der räumliche Bau von Molekülen
              • 4.2 Atomradien
              • 4.3 Elektronegativität
              • 4.4 Polare und unpolare Atombindung
              • 4.5 Elektrische Dipole
              • 5 Ionenbindung
              • 5.0.1 Elektroneutralität 
          • 2. Redoxreaktionen
              • Back
              • 1. Magnesium und Sauerstoff
              • 1.2 Natrium + Chlor
              • 1.3 Neue Definitionen
              • 1.4 Aluminium reagiert mit Brom
              • 1.5 Ionenladungen und Formeln von Ionenverbindungen
              • 2 Bildung von Ionenverbindungen mit Nebengruppenelementen
              • 3 Redoxreaktionen mit Molekülen - Oxidationszahlen
          • 3. Säure-Base-Reaktionen
              • Back
              • Säure-Base-Reaktionen (Protolyse-Reaktionen)
              • 2 Reaktion von Chlorwasserstoff-Gas mit Ammoniak-Gas
              • 3 Reaktion von festem Ammoniumchlorid und festem Natriumhydroxid
              • 4 Allgemeine Säure-Base-Definition nach Brønsted (1923)
              • 5 Stärke von Säuren und Basen
              • 6 Chlorwasserstoff-Gas und Wasser
              • 7 Konzentration
              • 8 Neutralisation
              • 9 Bildung von Calciumhydroxid
      • 10. Klasse
          • Back
          • 1. Alkane
              • Back
              • 1.1 Methan
              • 1.4 Butan
              • 1.5 Homologe Reihe der Alkane
              • 1.6 Genfer Nomenklatur der Alkane
              • 1.6 Übungen zur Nomenklatur
              • 1.7 Eigenschaften der Alkane
              • 1.8 Angriffsfreudige Teilchen
              • 1.9 Radikalische Subsitution - Bildung von Halogenalkane
          • 2. Alkene
              • Back
              • 2.1 Ethen
              • 2.1.5 Nachweis von Alkenen (Mehrfachbindungen)
              • 2.1.6 Isomerien von Alkenen
              • 2.2 Nomenklatur der Alkene
              • 2.3 Katalytische Hydrierung
              • 2.4 Vergleich: Ethen – Ethan
          • 3. Alkine
              • Back
              • 3.1 Ethin (Acetylen)
              • 3.1.3 Herstellung
              • 3.2 Reaktionstyp bei Alkinen
          • 5 Alkohole - Alkanole
              • Back
              • 5.1 Ethanol
              • 5.1.3 Formelermittlung von Ethanol
              • 5.1.3 Formelermittlung von Ethanol - Teil II
              • 5.1.4 Versuch Ethanol reagiert mit Alkalimetall
              • 5.1.5 Induktiver Effekt
              • 5.2 Homologe Reihe der Alkohole, Alkanole
              • 5.2.4 Primäre, sekundäre und tertiäre Alkohole
              • 5.2.6 Mehrwertige Alkohole
              • 5.3 Chemische Reaktionen von Alkohol
          • 6 Carbonylverbindungen
              • Back
              • 6.1.1 Herstellung von Alkanale
              • 6.1.2 Funktionelle Gruppe der Alkanale (Aldehyde)
              • 6.1.4 Aldehydnachweise
              • 6.2 Alkanone (Ketone)
              • 6.3 Unterscheidung: Aldehyde – Ketone
          • 7 Carbonsäuren
              • Back
              • 7.1 Essigsäure – Ethansäure
              • 7.2 Funktionelle Gruppe der Monocarbonsäuren
              • 7.3 Vergleich der Siedepunkte - ZMK
              • 7.4.1 Säure-Base-Reaktionen
              • 7.4.2 Redox-Reaktion von Essigsäure mit Magnesium
      • 1. und 2. Jahrgangsstufe
          • Back
          • Elektrochemie II - Anwendungen
              • Back
              • 4 Anwendungen - 4.1 Volta-Element
              • 4.2 Bleiakkumulator
              • 4.3 Brennstoffzelle
              • 4.4 Weitere Batterien
              • 4.4.2 Alkali – Mangan-Batterie
              • 4.5 Akkumulatoren
              • 4.6 Herstellung von Stoffen mit Hilfe von erzwungene Redoxreaktionen
              • 4.6.2 Die elektrolytische Raffination von Kupfer
              • 4.7 Korrosion
              •  4.7.3 Beispiele für Elektrochemische Korrosionen
              • 4.7.4 Einfluss von Kohlenstoffdioxid auf die Korrosion
              • 4.7.5 Sauerstoff-Korrosion – Rosten von Eisen
              • 4.7.6 Korrosionsschutz
          • Energetik - Thermodynamik
              • Back
              • 1 Systeme
              • 2 Energieerhaltungssatz
              • 3 Innere Energie – U
              • 4 Volumenarbeit - W
              • 5 Reaktionswärme – Q
              • 6 Wärmekapazität
              • 7 Kalorimetrie
              • 7.2 Bestimmung der Neutralisationsenthalpie
              • 8 Enthalpie - H
              • 8.2 Endotherme Reaktionen
              • 8.3 Molare Standard-Bildungsenthalpie
              • 8.6 Satz von Hess
              • 8.6 Satz von Hess - Teil II
              • 9 Bindungsenthalpien
              • 9.2 Gitterenergien – Born-Haber-Kreispozess
              • 10 Heizwert und Brennwert
              • 11 Entropie – S
              • 11.2 Die molare Standard-Entropie
              • 12 Gibbs Energie – G
              • 12.1 Gibbs-Helmholtz: Beispiele
              • 13 Metastabile Zustände
              • 14 Zusammenfassung
          • Cycloalkane und Aromaten
              • Back
              • 1 Cycloalkane
              • 2 Aromaten
              • 2.2 Hückel-Regel
              • 2.3 Nomenklatur
              • 2.4 Heteroaromaten
              • 2.5.4 Friedel-Crafts-Alkylierung
              • 2.6 Phenole
              • 2.7 Anilin
              • 2.5 Benzolderivate durch elektrophile Substitution
          • Gleichgewichtsreaktionen
              • Back
              • 01 Umkehrbare Reaktionen
              • 01.2 Beispiel Calciumhydroxid
              • 2 Gleichgewichtsreaktionen
              • 2.3 Modellexperiment - Stechheberversuch
              • 2.4 Merkmale eines chemischen Gleichgewichts
              • 2.5 Estergleichgewicht
              • 2.6 und 2.7 Schreibweise und Kollisionsmodell
              • 2.9 Benzoesäure-Gleichgewicht
              • 2.10 Verschiebung des Gleichgewichts
              • 2.11 Prinzip von Le Chatelier
              • 2.12 Massenwirkungsgesetz (MWG)
              • 2.13.2 Ermittlung der GG-Konstante Kc
              • 2.14 Berechnungen zum Massenwirkungsgesetz
              • 2.15 Die Ammoniaksynthese
          • Säure-Base-Reaktionen
              • Back
              • 1. Autoprotolyse des Wassers
              • 2. Der pH-Wert
              • 3 Protolyse-Reaktionen
              • 3.2 Ammoniak-Gas + Wasser
              • 3.3 Neutralisation
              • 3.4 Mehrprotonige Säuren
              • 3.5 Stärke von Säuren und Basen
              • 4 Stärke von Säuren und Basen
              • 4.2 Basestärke: der pKB-Wert
              • 4.4 pH-Wert unterschiedlich starke Säuren
              • 4.5 Säure-Base-Reaktionen in Salzlösungen
              • 4.6 Zusammenfassung
              • 5 Indikatoren
              • 6 Säure-Base-Titration
              • 7 Pufferlösung
          • Naturstoffe
              • Back
              • 01 Isomerie
              • 02 Fischer-Projektion
              • 03 Optische Aktivität, Polarimeter und Racemat
              • 04 Kohlenhydrate eine Übersicht
              • 04.1 Monosaccharide - Glucose
              • 04.1 Halbacetalbildung
              • 04.1 Ringstruktur der Monosaccharide
              • 04.1 Systematik der Namensgebung
              • 04.1 Fructose und Keto-Enol-Tautomerie
              • 04.1 Reaktionen der Monosaccharide
              • 04.1 Glycosidbindung - Vollacetal
              • 04.2 Disaccharide
              • 04.2 Saccharose
              • 04.3 Polysaccharide - Amylose
              • 04.3 Cellulose
          • Naturstoffe II
              • Back
              • 5 Proteine
              • 5.1.6 Aminosäure sind Ampholyte
              • 5.1.7 Isoelektrischer Punkt
              • 5.1.9 Nachweisreaktionen
              • 5.2 Peptide
              • 5.2.4 Einteilung der Peptide
              • 5.3 Eiweiße
              • 5.3.4 Primärstruktur
              • 5.3.11 Enzyme
              • 6 Nucleinsäure
              • 7 Lipide
          • Elektrochemie - Übersicht
              • Back
              • 1 Freiwillig ablaufende Reaktionen
              • 1 Freiwillig ablaufende Reaktionen Teil b
              • 1.2 Erstellung einer Redoxreihe
              • 1.2 Wiederholung Oxidationszahlen
              • 1.3 Stellung von H2/2 H+
              • 1.4 Weitere Redoxreaktionen
              • 2 Elektrochemische Zellen
              • 2 Metallische Bindung
              • 2.2 Standardelektrodenpotential und NHE
              • 2.3.1 Standardelektronenpotential von Kupfer
              • 2.4 Die elektromotorische Kraft (EMK)
              • 2.5 Elektrochemische Spannungsreihe der Metalle
              • 2.5.1 Standardelektrodenpotential der Chlorknallgaszelle
              • 2.5.2 Anwendung der Spannungsreihe
              • 2.5.3 Zusammenfassung wichtiger Begriffe
              • 2.6 Konzentrationszelle
              • 2.7 Nernst-Gleichung
              • 3 Elektrolyse
              • 3.3 Zersetzungsspannung
  • PSE
  • Biologie
      • Back
      • Themen
      • 7. Klasse
          • Back
          • 1 Zelluläre Organisation von Lebewesen
              • Back
              • 1.1 Mikroskopieren und Protokollieren
              • 1.2 Aufbau von Zellen
      • 9. Klasse
          • Back
          • Genetik
              • Back
              • 1 Erbinformation
              • 2 Chromosom
              • 3 Formen des Wachstums
              • 3.1.1 Mitose
              • 3.1.2 Die Meiose
              • 3.1.3 Rekombination (Neukombination)
              • 4 Klassische Genetik - Vokabeln
              • 4.1 Dominant-rezessiver-Erbgang
              • 4.1.2 Rückkreuzung
              • 4.1.3 Dihybrider Erbgang
              • 4.2 Intermediärer Erbgang
              • 5 Humangenetik – Stammbaumanalyse
              • 6 Molekulargenetik - Aufbau der DNA
              • 6.2 Vom Gen zum Merkmal
      • 1. und 2. Jahrgangsstufe
          • Back
          • Exkurs: Fotosynthese
  • NWT
  • Software & Tutorials
      • Back
      • Chemsketch-Tutorial
      • OpenOffice - Writer - Tutorial
      • HTML5-Spielwiese
      • HTML5-Spielwiese Teil 2
  • Fotos
  • Suche
  1. Aktuelle Seite:  
  2. Home
  3. Chemie
  4. 1. und 2. Jahrgangsstufe
  5. Chemie
  6. Chemie extern
  7. Chemie Themen
  8. 1. und 2. Kursstufe
  9. Naturstoffe

Naturstoffe

1    Isomerie:

 

Isomere[1]: Zwei Verbindungen mit gleicher Summenformel, aber unterschiedlicher chemischer Struktur. Isomere unterscheiden sich teilweise in ihren physikalischen, biologischen und chemischen Eigenschaften.

 

Grafik die die unterschiedlichen Isomerien zeigen

 

Chiral[2]: Objekte, deren Spiegelbild nicht durch Drehung mit dem Original in Deckung gebracht werden können.

Achiral: Objekte, deren Spiegelbild durch Drehung in Deckung gebracht werden können.




 



[1] Isos (gr) = gleich; Meros (gr) = Teil

 [2] Chiral: cheir (gr) = Hand, Händigkeit
Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 16. Juni 2016
  • Organische Chemie
  • Isomerie
  • Chiral

2 Fischer-Projektion

Regeln und Reihenfolge:

  1. C-Gerüst senkrecht
  2. höchstes oxidiertes C-Atom oben (Oxidationszahl)
  3. beide C-C-Bindungen am mittleren C-Atom zeigen nach hinten (hinter die Papier-Ebene)
  4. beide horizontale Bindungen am mittleren, asymmetrischen C-Atom (H-C-; H-O-C-Bindung) zeigen nach vorne.
  5. Das Isomer, bei dem die Substituentengruppe mit dem elektronegativsten Atom in der Fischer-Projektion rechts steht, wird mit D[1] bezeichnet; steht der Substituent links, dann wird er mit L[2] bezeichnet.

Beispiel
a) Milchsäure: 2 Hydroxypropansäure
Strukturformel in Fischerprojektion der L- und D-Milchsäure

Im folgenden die D-Milchsäure

 

Kalottenmodell der Milchsäure

 c) Weinsäure (2,3-Dihydroxybutan-1,4-Dicarbonsäure):
Wichtiger Hinweis: die zweite  Weinsäure ist die D-(-)-Weinsäure. Der Name innerhalb der Abbildung  ist falsch! Danke für die Korrektkur. 

 Strukturformeln der Weinsäure (D, L und meso-Weinsäure)

 

Hat eine Verbindung n asymmetrische C-Atome, so gibt es meist 2n Stereoisomere. Stereoisomere, die keine Enantiomere sind, heißen Diastereomere und haben verschiedene physikalische Eigenschaften. 

Substanzen, deren Moleküle mit ihren Spiegelbildern übereinstimmen, obwohl sie Chiralitätszentranen besitzen, heißen meso-Verbindungen ("Das Spiegelbild des Originals kann durch Drehung wieder genau so aussehen, wie das Original). Sie besitzen eine Spiegelebene im Molekül. 

----------------- 

[1] D = dexter (lat) = rechts
[2] L = laevus (lat) = links

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 02. April 2024
  • Organische Chemie
  • Isomerie
  • Chiral
  • Alkohole
  • Alkanone
  • Carbonsäure

3. Optische Aktivität und Polarimeter

Beim Durchgang von polarisiertem Licht durch die Lösung eines Enantiomeren erfährt die Polarisationsebene eine Drehung um einen bestimmten Betrag nach rechts oder links. Das andere Enantiomere dreht die Polarisationsebene des Lichtes um den gleichen Betrag in die entgegengesetzte Richtung. 

Funktionsweise eines Polarimeters

Der Drehwinkel α ist direkt proportional der: 

  • Massenkonzentration β  
  • Länge l des Probenrohrs

Der Proportionalitätsfaktor αsp hat einen für die optisch aktive Verbindung charakteristischen Wert. Er wird spezifische Drehung genannt. Sie wird bei 20 °C mit dem Licht einer Natrium-dampflampe bestimmt, das heißt mit Licht der Wellenlänge λ = 589,3 nm.


Schreibweise:
(+): rechtsdrehende Verbindungen
(-): linksdrehende Verbindung

Racemat (racemische Mischung, Raceform): äquimolares Gemisch der Enantiomere; dreht das polarisierte Licht nicht.  

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 16. Juni 2016
  • Isomerie
  • Chiral
  • Optisch Aktiv

4 Kohlenhydrate - Einteilung der Kohlenhydrate

Name: Die meisten Verbindungen dieser Stoffklasse haben die Summenformel Cx(H2O)y. 

Monosaccharide, Einfachzucker
einfache Kohlenhydrate
Bsp.: Glucose, Fructose, Galactose 

Oligosaccharide
zusammengesetzte KH aus 2-8 Monosaccharide; Disaccharide umfasst die Zweifachzucker (Bsp.: Saccharose, Maltose, Lactose).

Polysaccharide
durch Polykondensation von MS entstanden.
Stärke, Glycogen, Cellulose

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 16. Juni 2016
  • Organische Chemie
  • Kohlenhydrate

4.1 Monosaccharide

4.1.1 Glucose - Traubenzucker

Vorkommen: Trauben, Früchte

a) physikalische Eigenschaften

  • Aggregatzustand: fest; Schmelzpunkt um 146°C; weiteres Erhitzen führt zur Zersetzung. 
    Folgerung: Glucose besitzt hohe zwischenmolekulare Kräfte (Vermutung: H-Brückenbindung) und van-der-Waals-Kräfte. 

 

  • Löslichkeit: 
    Glucose löst sich sehr gut in Wasser (67g/100ml), dagegen löst sich Glucose nicht in Benzin. Eine wässrige Glucoselösung zeigt (fast) keine elektrische Leitfähigkeit.
    Folgerung: Glucose enthält polare Gruppen, die mit Wasser H-Brücken eingehen können. Es entsteht keine Ionen.

b) qualitative Elementaranalyse

Reaktion von Glucose mit konzentrierter Schwefelsäure:

Versuchsskizze Glucose mit Schwefelsäure im Reagenzglas unter Entstehung von Zuckerkohle

Folgerung: Glucose enthält Kohlenstoff.
Mitteilung: Glucose enthält neben C noch H und O.


c) quantitative Elementaranalyse
Die quantitative Elementaranalyse nach Liebig ergibt:
 3,6 g Glucose liefert bei der Verbrennung:

  • 5,28 g CO2
  • 2,16 g H2O


Glucose besitzt folgende Summenformel: CnH2nOn
Von dieser allgemeinen Formel [C(H2O)]n leitet sich die Bezeichnung Kohlenhydrate ab.
Hinweis: Im Heft folgen jetzt die Arbeitsanleitung zur Strukturaufklärung (mit den diversen Experimenten). Hier folgt jedoch gleich das Ergebnis. Die Reaktionsgleichungen von Fehling und Tollens-Reagenz finden sich dann auf anderen Seiten. 

Ergebnis:
Glucose ist ein Polyhydroxyaldehyd, genauer Pentahydroxyhexanal, ein Aldehydzucker oder Aldose.
Aldose = Monosaccharide, mit terminaler Carbonylgruppe (Aldehyd)
Ketosen = Monosaccharide, mit nicht endständiger Carbonylgruppe (Keton).


Fischerprojektion:
Es gelten folgende Regeln:

 Glucose in der Strukturformel als Fischer-Projektion

  • Die C-C-Kette wird senkrecht geschrieben.
  • Die am höchsten oxidierte Gruppe steht oben.
  • Die C-C-Bindungen sind bei jedem C-Atom nach hinten abgewinkelt;
  • dann zeigen die waagrechten Bindungen nach vorne;
  • Bei der offenen Glucoseform gibt es vier asymmetrische C-Atome ==> 24-Isomere;
  • Die Bezeichnung erfolgt nach dem untersten C-Atom (hier C5-Atom). 
  • Da die OH-Gruppe rechts steht ==> D-Konfiguration.
  • ==> D-(+)-Glucose 

 


(L-Glucose erhält man nur synthetisch)

Bildung von Glucose:
Bei Pflanzen (Fotosynthese) und Tieren (durch Abbau von anderen Molekülen).

Fotosynthese:
Fotosynthesegleichung: 6 CO2 + 12 H2O reagieren unter Licht zu Glucose + 6 O2 und 6 H2O

60 Mrd t Kohlenstoff werden dabei im Jahr gebunden.

Abbau von Glucose:
Bei der Zellatmung (Pflanzen, Pilze, Tiere)

Reaktionsgleichung der Zellatmung

Details
Geschrieben von: Wolfram Hölzel
Zuletzt aktualisiert: 16. Juni 2016
  • Organische Chemie
  • Kohlenhydrate
  • Chiral
  • Alkohole
  • Carbonyle
  • Aldehyde
  • Optisch Aktiv
  • Nachweisreaktionen
  1. 04.1.2 Halbacetalbildung
  2. 04.1.3 Ringstruktur der Monosaccharide
  3. 04.1.4 Systematik der Namensgebung
  4. 04.1.5 Fructose und Keto-Enol-Tautomerie
Natriumchlorid HNO-Regel Nomenklatur Alkohole Hydrolyse Alkane Ammoniak Organische Chemie Regeln Periodensystem der Elemente Induktiver Effekt Halbacetal Ammoniumchlorid Alkanole Elektronenpaarbindung Rekombination Anilin Verhältnisformel Schreibweise Gleichgewichtsreaktionen
  • Home
  • Kontakt
  • Impressum - Disclaimer
  • Datenschutzbestimmungen
  • Sitemap
© 2025 W. Hölzel - Biologie und Chemie
To Top
{cookiesinfo}